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The project described in this document is exploring the use of Latent Semantic Analysis
(LSA) and statistical clustering techniques for automatically identifying word senses and
for estimating word sense frequencies from application relevant corpora. The hypothesis
is that LSA can be used to compute context vectors for ambiguous words that can be
clustered together — with each cluster corresponding to a different sense of the word.
In addition to a relevant literature survey that was submitted earlier, and included here in
Appendix A. and the source code in Appendix B, the deliverables for this project are:
1. Investigation of the effect of dimensionality of LSA-based representation on
word sense discrimination.
2. Investigation of the effect of context size used in LSA on word sense
discrimination.
3. Investigation of the use of regularization techniques in order to determine the
number of senses automatically.

This report is organized as follows:

The next section includes short introduction of LSA, introduction of the context-group
discrimination paradigm adapted in this project, and description of corpus used in the
experiments. Section 2 describes the investigation of the effect of LSA dimensionality.

After the first set of experiments we were intrigued to understand why the sense
discrimination accuracy was relatively low. This motivated the digression into
investigation of influence of different distance measures; investigation of geometry of
the sense clusters in the LSA-based space through silhouette value analysis;
investigation of sense discrimination accuracy as a function of degree of supervision
provided during model training; and investigation and comparison of sense
discriminations in homonyms versus polysems. All these are described in section 2,
followed by two sections describing the last two deliverables. Finally, we summarize
the project in section 5.

1 Introduction
1.1 Latent Semantic Analysis

Latent semantic analysis is a mathematical technique used in natural language
processing for finding complex and hidden semantic relations among words and the
various contexts in which they are found (Landauer and Dumais, 1997; Landauer et al,
1998). LSA is based on the association of elements (words) with contexts. Similarity in

word meanings is indicated by a corresponding similarity of the associated word
contexts.

The starting point for LSA is the construction of a co-occurrence matrix, where the
columns represent the different contexts in the corpus, and the rows represent the



different word tokens. Each entry ij in the matrix corresponds to the number of times the
word token i appeared in context j. Often the co-occurrence matrix is normalized for
document length and word entropy (Dumais, 1994).

The critical step of the LSA algorithm is the singular value decomposition (SVD) of the
normalized co-occurrence matrix. If the matrices comprising the SVD are permuted such
that the singular values are in decreasing order, they can be truncated to a much lower
rank. According to Landauer and Dumais (1997), this dimensionality reduction step
achieves the capturing of the relationship between words and passages and uncovers the
relevant structural aspects while filtering out noise. The singular vectors correspond to
the principal components, or axes of largest variance of the data, revealing the hidden
abstract concepts of the semantic space. Words and documents can then be represented
as a linear combination of these concepts.

Within the LSA framework discreet entities such as words and documents are mapped
into the same continuous low-dimensional parameter space, revealing the underlying
semantic structure of these entities and making it especially effective for a variety of
machine-learning algorithms. Following successful application of LSA to information
retrieval, other applications of the same methodology have been explored, including
language modeling, word and document clustering, call routing, and semantic inference
for spoken interface control (Bellegarda, 2005).

The goal of the work described here is to explore the use of LSA for unsupervised
identification of word senses and for estimating word sense frequencies from application
relevant corpora. In this paper we describe four sets of experiments aimed at investigating
the tightness, separation, and purity of LSA-based clusters.

1.2 Context-Group Discrimination Paradigm

The basic idea of Schiitze’s (1998) context-group discrimination paradigm adopted in this
investigation is to decode the sense of ambiguous words from their contextual similarity.
The occurrences of ambiguous words represented by their context vectors are grouped
into clusters consisting of contextually similar occurrences. The context vectors in our
experiments are LSA-based representations of the documents in which the ambiguous
words appear. Context vectors from the training portion of the corpus are grouped into
clusters and the centroid of each cluster—the sense vector—is computed. Ambiguous
words from the test portion of the corpus are disambiguated by finding the sense vector
(cluster centroid) closest to the corresponding context vector representation. If sense
labels are available for the ambiguous words in the corpus, sense vectors are given a label
that corresponds to the most relevant sense in their cluster, and sense discrimination
accuracy can be evaluated by computing the percentage of ambiguous words from the
test portion that were mapped to the sense vector whose label corresponds to the
ambiguous word’s sense label.

1.3 Experimental Setup

We used the “ line-hard-serve-interest” corpus (Leacock et al, 1993), including 1151
instances of 3 senses of the noun “Line” i.e. cord - 373, division - 374, and text — 404;



752 instances of 2 senses of the adjective “Hard™: i.e. difficult — 376, not yielding to
pressure or easily penetrated — 376; 1292 instances of 2 senses of the verb “Serve™: i.e.
serving a purpose, role or function or acting as — 853, and providing service 439; and
2113 instances of 3 senses of the noun “Interest™: i.e. readiness to give attention - 361, a
share in a company or business — 500, money paid for the use of money -1252. All
instances of each ambiguous word in the corpus were represented by the corresponding
LSA context vectors. Since, in general, in this corpus the length of each document
embedding an ambiguous word instance is relatively short (a paragraph of 33 words on
average) we used the whole document as the context for computing the co-occurrence
matrix.

In the experiments for deliverable No. 1 and No. 2 we assumed that the number of
clusters corresponds to the number of different labeled senses in the corpus.

To study the influence that the proximity distance measure has on the disambiguation
performance we considered three different distance measures:
V:‘k i V;k

-
]

1) L1 or city-block distance defined as d(V,, I7f.) = Z
k

2) L2, or squared-Euclidean distance:

2 Deliverable No 1: Investigation of optimal reduced dimensionality
2.1 Experiments.

To investigate the effectiveness of LSA representation for sense discrimination we
conducted four sets of experiments described in the following subsections.

2.1.1 Sense-based Clusters: Supervised case.

Although our ultimate goal is the evaluation of the effectiveness of LSA for unsupervised
word sense disctimination, in our first set of experiments sense labels were used directly
to determine the sense-cluster centroids by averaging the training vectors with the same
sense labels. This was done to evaluate the separation of the different senses in the LSA-
based vector space. Ideally these sense-based clusters would be tight (the vectors in the
cluster close to each other and close to centroid of the cluster), and well separated from
each other; each cluster would be pure, i.e., consisting of vectors corresponding to words
with the same sense, similarly to clusters shown in figure 1a. In this experimental setting



we evaluated the purity of sense based clusters, as opposed to clusters based on
geometrical position of vectors. This corresponds to a supervised learning approach,
since sense labels from the training portion of the corpus were used to define the clusters
and their centroids. The relationship between supervised and unsupervised clustering is
explained in the following subsection.

2.1.2  Supervised vs. unsupervised clustering.

a) Average silhouette value: Cosine: 0.96, L1; 0.73, L2: 0.92 AClass A

OClass B
oClass C
»x Class D

Figure 1: Extreme clustering scenarios

Figure 1 shows two extreme cases of clusters where we expect to get similar clustering
performance for both supervised and unsupervised algorithms. The first case (figure 1a)
corresponds to an ideal representation where the different senses form tight clusters that
are well separated from each other. Here we can reasonably expect that unsupervised
clustering approaches based on the geometrical relationships among vectors, such as K-
means and EM, would perform as well as a supervised method in finding these clusters.
The second extreme case, shown in figure 1b, corresponds to a poor vector space
representation. Here the sets of vectors corresponding to the different senses of the word
are overlapped, and we can expect low discrimination performance for both supervised
and unsupervised methods. In general, supervised performance evaluated on the training
set constitutes an upper-bound for the unsupervised clustering performance: The cluster
centroids are, by definition, the points which have minimal average distance from each
point in the same cluster (i.e. from the words in the training set with the same sense
label). The centroids found by unsupervised clustering are instead based on geometric
properties of all context vectors, regardless of their sense label.



The performance of unsupervised clustering, in practice, is often influenced by the
parameters of each particular implementation, such as initialization, number of runs,
stopping criterion, etc. Thus, by evaluating the performance of the supervised clustering
one can obtain a computationally inexpensive upper-bound estimate of the performance
of the unsupervised approach, which is independent of the implementation details.

2.1.3 Performance measures.

We used the following measures to evaluate the inter-cluster tightness and intra-cluster
separation for the LSA representation with a varying number of dimensions:

1. Sense discrimination accuracy. We used 90% of the data to compute the centroid of
each cluster. We evaluated the sense discrimination accuracy on the remaining 10% of
the data by computing, for each test context vector, the closest cluster centroid and
comparing their sense labels. Each experiment was repeated 10 times using a different
10% of the data for testing and reported discrimination accuracy was computed as an
average of these 10 runs.

2. Average Silhouette Value. The silhouette value (Rousseeuw, 1987) is a measure of
how similar each point is to other points in its own cluster as compared to points in other
clusters. The value of this measure ranges from -1 to +1: a value of +1 indicates points
that are very distant from neighboring clusters; a value of 0 indicates points that can
ambiguously belong to different clusters; and a value of -1, indicates points that are most
likely assigned to the wrong cluster. The following formula is used to construct the
silhouette value S(i) for each vector i:

50y =D =a)

max{a(i),b(i)}

where a(i) is the average distance of the i-th vector to all other vectors in the same
cluster and b(i) is a the minimum of the average distance of the i-th vector to all vectors
in the other cluster (i.e. the average distance between the points in the closest cluster
among the other clusters). The overall average silhouette value is simply the average of
the S(i) for all points in the whole dataset. Since we investigate the quality of the clusters
as a function of dimensionality of the underlying space, the silhouette value has the
advantage of being normalized against the dimensionality of the vectors, as opposed to
the dispersion measure D — i.e. the average distance of points in the cluster to cluster
centroid — that is expected to increase with increased dimensionality. Average silhouette
values for the two extreme cases discussed above are also shown in figure 1.
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2.1.4 Results
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Figure 2: Acuracy of sense based clusters

The results of the first set of experiments with sense-based clusters are shown in
Figures 2 and 3. Figure 2 plots the average discrimination accuracy of sense-based
clusters as a function of LSA dimensionality for different distance measures, namely L2,
L1 and cosine, for the 4 ambiguous words in the corpus. Note that the distance measure
choice affects not only the classification of a point to the cluster, but also the computation
of cluster centroids: For L2 and cosine measures the centroid is simply the average of
vectors in the cluster, while for L1 the value of i-th dimension of the cluster centroid
vector 1s the median of values of the i-th dimension of all the vectors in the cluster.
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Figure 3: Silhouette value of sense based clusters

As shown by the sense discrimination results in Fig. 2, cosine distance, the most
frequently used measure in LSA applications, has the best performance for 3 out of 4
words in the corpus. Only for the word “Hard” does L1 outperform cosine for low LSA
dimensionality. For every number of dimensions examined, the average sense
discrimination accuracy is significantly better than the baseline (computed as the relative
percentage of the most frequent sense of each ambiguous word in the corpus).

Figure 3 shows the average silhouette values for the sense-based clusters as a function of
the dimensionality of the underlying LSA—based vector representation for the 3 different
distance metrics and for each of the 4 words in the corpus.

The average silhouette value is close to zero without significant variability with respect to
the number of dimensions and distance measures. A possible explanation of these results,
namely a combination of close to zero silhouette values and relatively good sense-
discrimination accuracy, is that the context vectors in the LSA space are very close to the
separation hyper plane, as is shown for 2-dimentional data in figure 4.
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Figure 4: Possible explanation for low silhouette values and good separation accuracy

2.2 Unsupervised Clustering.

In the second set of experiments we evaluated the clusters obtained in a non-supervised
approach such as the K-Means algorithm. K-Means is a model-based partitional
clustering algorithm that is theoretically related to the EM algorithm (Alldrin et al, 2003).
The K-Means algorithm finds K clusters by choosing K data points at random as the
initial centroids. Each data point is then assigned to the closest centroid in order to form
clusters by aggregation. Each centroid is then recomputed for each one of the new
clusters. This process is iterated until no data points are reassigned to different clusters. It
can be shown that K-Means performs a local minimization of the dispersion, D, i.e. the
sum of the distances of each point from the centroid of the cluster to which it belongs.

2.2.1 Results

Figure 5 summarizes the results of the second set of experiments with clusters obtained
by the K-means algorithm. In this set of experiments, only the cosine distance measure
was used. Figure 5 shows the discrimination accuracy as a function of the dimensionality
of the LSA representation. Each plot corresponds to one of the 4 different words in the
corpus. Curves labeled K-0 and K-1, shown here for comparison, report the results of the
first set of experiments: K-1 is the accuracy with the cosine distance from Figure 1; and
K-0 is the discrimination accuracy as evaluated on the training set. The word sense
discrimination accuracy estimated in this way is an upper bound on the word sense
discrimination performance of unsupervised clustering such as K-means or EM, as
previously explained in section 4.1.1. For each word in the corpus and for each number
of dimensions we ran 10 cycles of K-means starting from random centroids. The
scattered points labeled as K-3 describe the accuracy for those experiments. The single
point for each number of dimensions labeled as K-4 represents the accuracy of the cluster
with the smallest dispersion D. To estimate the performance for the best possible
initialization of K-means (curve K-2), we set initial cluster centroids as the sense-clusters
centroids.

13
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Figure 5: Results with Unsupervised Clustering

2.3 Semi - Supervised Clustering

The best performance of K-means shown in figure 5 by the curve labeled K-2 was
obtained by selecting the best initialization: the initial cluster centroids were computed as
sense-based clusters’ centroids. Notice that the discrimination accuracy in this case is
very close to the one attained by supervised clustering, described by curve K-1 in figure
5. This, of course, is not surprising, since we used sense labels to find a good starting
point for K-means, just like in the supervised case. However, we can see the two types of
of clustering: 1) unsupervised clustering initialized from random points (K-3 in figure 5);
and 2) clustering initialized in a ‘supervised’ manner (curve K-2 in figure 5) as two
extreme points in a continuum of varying degrees of supervision. Thus, in the

14



experiments reported in this subsection we measure the sense discrimination performance
as a function of degree of supervision.
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Figure 6. Semi-supervised Clustering

Here we use supervision, similarly to the experiment that yielded the curve K2 in figure
5, to find the initialization points (initial sense cluster centroids) for the K-Means
algorithm. We refer to this as semi-supervised clustering: the idea here is to use two sets
of data: a small initialization set of labeled data to determine the initial cluster centroids
for K-means, and a large unlabeled set which is used during the successive iterations of
K-means to produce the ultimate clusters. We define the degree of supervision (DS) as
the number of labeled instances from each word-sense that were used to compute the
initial centroids. For example, for DS = 1, we chose, randomly, one instance for each
sense to serve as initial cluster centroid for that sense, while for DS = 10, we used 10
random instances.
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Figure 7: performance comparison of semi-supervised clustering vs. supervised for a given
degree of supervision.

Figure 6 describes the discrimination accuracy, or the purity of the clusters, as a
function of reduced dimension of LSA representation for different values of DS. In each
plot, corresponding to one of the words in the corpus, the curves are labeled by the degree
of supervision. Each point on these plots was obtained by averaging the results of 10
independent runs of K-means initialized as described above. Curve labeled by DS=0
corresponds to unsupervised performance, while curve K-2 (from figure 5), describing
the performance of the fully supervised approach, is shown here for reference. The five
curves in each plot show the performance monotonically increasing with the degree of
supervision.

We can consider the semi-supervised learning to be performed in two stages: the first
one is supervised, where labeled data is used to compute an estimate of cluster centroid;
and the second one, unsupervised, where clustering is performed on larger set of
unlabeled data using the estimates obtained in the first stage as initialization points. To
measure the value of the second, unsupervised learning stage for sense discrimination
accuracy we compared the sense discrimination accuracy of the two stage semi-
supervised algorithm (from figure 6) to the one obtained by clusters whose centroids are
the estimates computed in the first, supervised, stage.
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As is shown in Figure 7 for the word “Line”, while the unsupervised clustering of the
second stage improves the discrimination performance, the relative improvement
diminishes as the size of the labeled data used in the supervised stage increases.

These results indicate that:

a) The performance of the non-supervised approach degrades significantly with respect to  the
performance of the supervised method. Except for the word line, the discrimination accuracy of
the most compact cluster (K-4) is close to the baseline.

b) The performance of K-means is highly dependent on the initialization as shown by a
wide scatter of points (K-3).

¢) There is no correlation between the compactness of the clusters (as measured by dispersion
D) obtained by K-means and their discrimination accuracy, or, in other words, the most compact
clustering (K-4) does not necessarily yield the best discrimination result.

d) Figures 2, 3, 5 do not show any pronounced maximum value for any range of LSA
number of dimensions. These results suggest that the reduction of dimensionality does
not increase the sense discrimination power of the LSA representation, but only makes
the computation more efficient and thus enables processing of much larger corpora.

2.4 Polysems vs. Homonyms

Ambiguous words in the line-hard-serve-interest corpus are examples of polysems. A
polyseme is a word with multiple meanings related to each other. On contrast,
homonyms are homophonous words with unrelated meanings. The noun bank, as a
financial institution and bank as river-bank are examples of homonyms. Disambiguation
of polysemes is a difficult problem even for humans (Kilgarriff, 1997), and even more so
for automatic sense discrimination algorithms. To evaluate the performance of LSA-
based clusters on homonyms and to contrast it to the performance on polysemes we
conducted a third set of experiments described in this subsection.

We followed the evaluation paradigm proposed in (Schiitze, 1998), where artificial or
pseudowords were used as a convenient means of testing disambiguation. Two or more
words, in our case, line, hard, serve and interest, are conflated into a new type: line-hard-
serve-interest. All occurrences of either word in the corpus are then replaced by the new
pseudoword. It is easy to evaluate disambiguation performance for pseudowords since
one can go back to the original text to decide whether a correct decision was made.

Figure 8 presents the sense discrimination results for this set of experiments for a
pseudoword corpus consisting of 1000 random instances of each of the 4 original words
substituted with the pseudoword type. Curves and points labeled K-0 to K-4 in figure 4
are in full analogy to Figure 5. The results in figure 8 show that not only the
discrimination performance for pseudowords is much above the baseline, but also that the
performance of the unsupervised method is very close to that of the supervised one: curve
K-4 obtained by finding the most compact cluster in 10 runs of K-means initiated from
random points is very close to its upper bound K-2 and to the supervised performance K-
1, in contrast to the results for polysemes in Figure 5.
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Figure 8: Discrimination accuracy for homonyms
3 Deliverable #2: Investigation of optimal context size.

In this section we describe experiments aimed at evaluating the optimal LSA context size
for word — sense discrimination.

Figures 9 -11 present the sense discrimination results for a pseudoword corpus consisting
of 1000 random instances of each of the 4 original words substituted with the
pseudoword type, the same corpus used in section 2.4. Curves and points labeled K-0 to
K-4 in these figures are in full analogy to Figures 5 and 8.

Figure 9 presents discrimination results for LSA representation of pseudowords, when
context window of 3 words centered on the word in question is used.

In Figure 10, context window of 7 words (3 on each side) and in Figure 11 — a window of
11 words (5 on each side) centered on the current word was used.

The reference context — entire document — was used in experiments described in section
2.4 and represented by figure 8.

Note that the maximal dimension of LSA representation also depends on the context size,
since it is the rank of the co-occurrence matrix.
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Figure 9: Discrimination accuracy for context window or 3 words (one on each side)
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Comparison of figures 8 — 11 indicates that the best unsupervised discrimination results
(curve K-4) are obtained for LSA representation based on full document context;
moreover, the results improve monotonically when the context size grows. For reference,
in these 4000 documents that constitute the homonym corpus, the average document
length (full context size) is 18 (when excluding stop words).

4 Deliverable No. 3: The use of MDL to Determine the Number of Word Senses

The problem of unsupervised clustering when the number of clusters is not known is ill-
posed. The error of fitting to the data can only be reduced by increasing the number of
clusters: the best fit for the data would be a trivial clustering were the number of clusters
is equal to the number of vectors in our data set. For WSD that means a different sense
for every occurrence of a word. Of course, this trivial clustering does not provide any
information on the nature of the data. To find automatically both the best number of
cluster and meaningful clustering, regularization methods can be used. Regularization is a
method of imposing additional conditions for solving inverse problems with optimization
methods. With regularization, the objective function that the clustering algorithms are
trying to optimize measures not only the fit of the model to the data (this fit can only be
made better by adding clusters), but also a penalty term that measures the complexity of
the model (this penalty is smaller for simpler models with fewer clusters).

In particular, in this project we used Minimal Description Length Principle.
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The Minimum Description Length (MDL) Principle (Rissanen 1978; Rissanen 1987;
Rissanen 1996) is a method for inductive inference that provides a generic solution to the
model selection problem. MDL views the problem of model estimation as data
compression, and is based on the following insight: any regularity in the data can be used
to compress the data, 1.e. to describe it using fewer symbols than the number of symbols
needed to describe the data literally. The more regularities there are, the more the data
can be compressed. Equating ‘learning' with “finding regularity', we can therefore say
that the more we are able to compress the data, the more we have learned about the data.

4.1 Clustering as data partitioning

In the following we will use notation and introductory explanations from (Kontkanen et
al, 2005).

Let us denote by x" ={x,,...x,} € X the data set consisting of » LSA representations of
ambiguous words. The set X consists of all the vectors of the form(a,,...a, ), where each

variable (or attribute) a,takes on values on some set that can be either a continuum of
real numbers, or a finite set of discrete values.

A clustering of the data set x” is defined as a partitioning of the data into mutually
exclusive subsets (each representing a unique word sense), the union of which forms the
data set. The number of subsets is a priori unknown. The clustering problem is the task to
determine the number of subsets, and to decide to which cluster each data vector belongs.

Formally, we can notate a clustering by using a clustering vector y" ={y,,...y, }, where
¥, denotes the index of the cluster to which the data vector x, is assigned to. The number
of clusters K is implicitly defined in the clustering vector, as it can be determined by
counting the number of different values appearing in y". Hence the clustering problem is
now to find from all the y” € Q the optimal clustering "

4.2 Model Class

Consider a set @ € R“. A class of parametric distributions indexed by the elements of
@is called a model class. That is, a model class M is defined as the set
M ={P(-|16:6 € 6}.

In the following, we use the simple finite mixture as the model class. In this case, the
probability of a single data vector is given by

4) P(x|0,M)=) P(x|y=k8,M)P(y=k|6,M,),

so that a parametric model @ is a weighted mixture of K component models Bl
each determining the local parameters P(x|y=+k,0,M )and P(y=k|6,M,).
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Furthermore, as is usually done in mixture modeling, we assume that the variables
{a,....a,,} are locally (conditionally) independent:

5) P(x|y=k,0,.M)=]]P(a,|y=k0,M,)

i=]
The above assumes that the parameter K is fixed. Since the number of clusters is bounded
by the size of the available data set, in the following we consider the union of model
classes M,,..,. M, .

4.3 Clustering and MDL

Our optimality criterion for clustering is based on information-theoretical arguments, in
particular on the Minimum Description Length (MDL) principle (Rissanen 1978;
Rissanen 1987; Rissanen 1996).

Intuitively, the MDL principle aims at finding the shortest possible encoding for the data,
in other words the goal is to find the most compressed representation of the data.
Compression is possible by exploiting underlying regularities found in the data — the
more regularities found, the higher the compression rate. Consequently, the MDL optimal
encoding has found all the available regularities in the data; if there would be an
“unused” regularity, this could be used for compressing the data even further.

How to formalize the above intuitively motivated MDL approach for clustering?

To proceed, lets restate the well-known fact from information theory about the
fundamental relationship between codes and probability distributions: for every
probability distribution P, there exists a code with a code length —log P(x) for all the data
vectors X, and for each code there is probability distribution P such that —log P(x) yields
the code length for data vector x (see [Cover and Thomas 1991]). This means that we can
compress a cluster efficiently, if our model class yields a high probability for that set of

data. Globally this means that we can compress the full data set x" efficiently if
P(x" | M) is high, where M is the class of models consisting of all possible clustering
with number of clusters K < n.

Now we can restate the clustering problem as finding number of clusters K, the model
e M, and a clustering vector y" ={y,,..y,} that maximizes the probability (or
minimizes the corresponding length of code)

$".0,K = argmax P(y",x" | K,0)- P(K,0) =
=argmax P(y" | K,0)- P(x" | y",K,0)- P(K,0))

6)

Finding the best model for clustering results therefore in a three part code: the first part is
the code needed to transmit the membership function given the data and a particular
model; the second part is the code required to transmit the data given the model and the
membership; and the third one is the code to transmit the parameters of the model itself:
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7) $".6.K =argmax[log P(y" | K,0) +log P(x" | y",K,0) + log P(K,0)]

In the following section we describe the models and the assumptions needed for
computation of the terms of the equation above in our case.

4.4 Applying MDL Principle to LSA vector clustering.

4.4.1 The first term: code length for the membership function.

The length of code to transmit the membership function is:log P(y" | K,6), where y” is

the membership assignment vector of length n, where each component of this vector is
an integer between 1 and K specifying the identity of the cluster the appropriate data
vector belongs to. We will assume here that all possible clusterings are equiprobable,

(with probability of1/ K") resulting in

8) logP(y" | K,0)=—-nlogk
4.4.2 The second term: code length for transmitting the data.

Assumption 1: The data is coming from an equiprobable mixture of normal distributions.
Since the membership of each data vector is given, it identifies the corresponding normal
density for the data vector:

9) p(x|y=iK,0)=N(C,.D),
where C, denotes i-th cluster centroid, and / is the identity covariance matrix.

This assumption is made not only for mathematical convenience, but mainly since
maximization of (9) corresponds to the K-means algorithm we use in this project for
clustering with Euclidian distance measure (Eq. 2).

Note that (9) is a probability density, while the corresponding term in Eq.(7) is a
probability. By its nature, our data (the LSA-based vectors) are real-valued vectors, and
their probability (as opposed to probability density) is not defined. Therefore in order to
use the MDL principle we need to quantize the data to make it discreet.

Assumption 2: We quantize the data into small axis parallel hyper cubes with a side
length of Ax. We assume that Ax is small enough so that the integral of normal density
of Eq. (9) -the probability mass- can be approximated by

Ax

Vor

where | -|denotes vector norm. From this, the corresponding code length (term 2 of Eq. 7)
1s

10) P(x| y =i,K.0) = (Av)* p(x | y =1, K,8) = ( )ﬁ’exp(—%| x=C, P),
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log P(x" | y",K,0) =d-n(10gAx—%log2ﬂ‘)—%Z|x, =Ly =
11) e

1
= const — 5 D(x",y",0),
where D(x",y",0) is the dispersion.

4.4.3 The third term: code length for transmitting the model.

In our case, the model parameters € are a set of K centroid vectors. We assume that the
centroids are independent and uniformly distributed on the discreet hypercube defined

by Ax. This hypercube is the smallest that still contains all the data, ie., the a-th
dimension of the hypercube has the length of x[™ —x™, where x™ and x™ are the
maximum and the minimum values of the a-th dimension of all LSA data vectors,
correspondingly.

The uniform probability over this discreet cube is

d
12) P(C) =1/ [ (x2™ —x7™ )/Ax,
a=1

and the corresponding code length is

K d
]3) IOgP(K,Q) =10gHP(C.f()= K.d.logﬂx_K_Zlog(x:mx _xmin) .

k=1 a=l 3
4.5 Experimental Evaluation

Now we are ready to rewrite Eq. 7 using the terms of equations 8, 11 and 13.

d =
9,K=argmax[—%D(x",y”,9)—(nlogK—K-d-logAx+K—Zlog(x§'“ —~x 1) =

a=1

14) 7
=argmax[L(y",8, K)].

In Eq. 14 we removed the terms that are constant with respect to y”,8 and K. Note, that

as expected, the objective function L(y",8,K) includes now 2 terms: the first one is

proportional to the dispersion; and the second is a penalty term that depends upon the
model complexity — the number of clusters X.

We performed maximization of Eq. 14 in two stages. For each possible value of number
of clusters K we maximized L(y",0,K) of Eq. 14 over parameters and membership
function. This maximization is equivalent to minimizing the dispersion, since the other
terms are constant for a given K. The minimization was performed by K-means algorithm
by simultaneously finding the cluster centroids (parameters) and assigning the data to
clusters (membership function). Since K-means finds a local minimum that is dependent
on its initialization, for each value of K under consideration we averaged the resulting
minimal dispersion over 10 runs of K-means.
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In our experiments we used the pseudo words corpus of 4000 documents described in the
pervious section (n = 4000), with LSA dimensionality set to 50 (d=50). Since our model
assumes that the data dimensions are independent, we applied whitening transformation
to the raw data, by performing a linear transformation that guarantees that the data
covariance matrix is identity.

Figures 12, 13, and 14 describe the results of experiments for the number of clusters K
taking 21 values from 2 to 400 clusters.
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Figure 12: Dispersion D as a function of number of clusters
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Figure 13: The penalty term as a function of number of clusters
In Figure 12 the averaged minimal dispersion D is plotted as a function of number of
clusters. Note, that as expected, this curve is monotonically non-increasing, since by

adding clusters we cannot make the minimal dispersion larger. In Figure 13 we plot the
K-dependent penalty term
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d

nlogK -K-d-logAx + K - Zlog(x;““x —x™) for several values of Ax, ranging from
a=]

1.0E-10 to 1.0E-3.

d
Figure 14 represents the sum ~—}§ ~[nlog K —K-d-logAx + K - ) " log(xy™ — x2™) ]
a=l

of Equation 14 for the different values of Ax . The maximum in these curves corresponds
to the numbers of clusters that is optimal according to MDL principle.

Our results indicate that the value of optimal K is quite insensitive to the choice of Ax .
For two Ax values of 1.0E-3 and 1.0E-7 the optimal numbers of clusters K was 50;

further decreasing Ax to 1.0E-10 changes K only slightly to K =45, However, in all
cases, the found number of sense clusters does not correspond to the number of pseudo —
homonyms we used to construct the corpus which was 4.
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Figure 14: The total cede length (Eq. 14)as a function of number of clusters.
Maximum point of each curve corresponds to the optimal number of clusters K.

5 Summary

This report summarizes the research performed for exploring the use of Latent Semantic
Analysis (LSA) and statistical clustering techniques for automatically identifying word
senses and for estimating word sense frequencies from application relevant corpora.

Three deliverables are described in the report, namely, investigation of the effect of
dimensionality of LSA-based representation on word sense discrimination; investigation
of the effect of context size used in latent semantic analysis on word sense
discrimination; and investigation of the use of regularization techniques in order to
determine the number of senses automatically.
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APPENDIX A

Using LSA to Compute Word Sense Frequencies: Literature
Review

1. Introduction

The goal of this project is to study Latent Semantic Analysis (LSA) based methods for
estimation of word sense frequencies. Existing word frequency measures are based on
relative frequency of word appearance in a corpus. To estimate word-sense frequency for
a particular word token /# we need to be able to tag all instances of # in the corpus by
their corresponding sense. Hence, the problem of word-sense frequency estimation is
closely related to the problem of Word Sense Disambiguation (WSD).

Our approach in this project is based on word sense frequency estimation by
unsupervised model-based clustering of polysemous words contexts described by their
LSA vector representation. Given such clustering, the word sense frequency distribution
can be computed as a relative count of instances in each cluster.

This report surveys the literature pertaining to this project. It is organized as follows:

Section 2 describes the motivation for this project, namely the need for word sense
frequency estimation in Double R Model. Section 3 focuses on exciting methodology for
word sense disambiguation, including supervised, dictionary-based, and unsupervised
methods. Section 4 describes LSA methodology and its extensions. Section 5 describes
clustering algorithms and regularization methods that can be applied to automatically
determine the number of clusters. Section 6 concludes with experimental setup for the
project.

2. Double R Theory and WSD

Double R Model (Referential and Relational Model) (Ball, 2003; 2004) is a model of
natural language. Double R Model adopts a cognitively plausible approach to modeling
language comprehension while attempting to support the development of large-scale
models. Double R Grammar is the Cognitive Linguistic theory of the grammatical
encoding of referential and relational meaning underlying Double R Model, and Double
R Process is the theory of language processing underlying Double R Model, constituting
a cognitively plausible processing mechanism for constructing integrated representations
of referential and relational meaning.

A computational implementation of Double R Model, is based on ACT-R [Anderson &
Lebiere, 1998; Anderson et als, in press]. ACT-R is a cognitive architecture and modeling
environment for the development of computational cognitive models that has been used
extensively in the modeling of higher-level cognitive processes (see the ACT-R web site
at http://act-r.psy.cmu.edw/ for an extensive list of models and publications). ACT-R
includes symbolic production and declarative memory systems integrated with sub-
symbolic production selection and spreading activation and decay mechanisms. A key
requirement of Double R Model is the ability to disambiguate the meaning of polysemous
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words. In ACT-R terms, this corresponds to retrieving the appropriate sense of a word

(using the activation equation,) given the current input word, the prior context (i.e. prior
words) and the history of use of the various senses of the input word. Here the frequency
of occurrence of a word sense translates into base level activation (Bi) of the word sense

and context translates into activation spread from the prior input (; Y ). These two

terms combine to determine the total activation of the word sense (47) in context.
Typically, the most highly activated word sense will be selected as the appropriate word
sense during processing.

The need to estimate frequency of occurrence of a word sense for computing base level
activation (Bi) motivates this project.

3. Word Sense Disambiguation

In general terms, Word Sense Disambiguation involves the association of a given word in
a text or discourse with a definition or meaning (sense) which is distinguishable from
other meanings potentially attributable to that word (Ide andVéronis, 1998). Words in any
language can have multiple meanings and their correct meaning is determined in context,
that is, in presence of co-occurrence with other words (i.e., co-occurrence). Sense
disambiguation is usually regarded as an “intermediate task™ (Wilks and Stevenson,
1996) which is not an end in itself, but rather is necessary at one level or another to
accomplish most natural language processing tasks, including natural language
understanding, information retrieval (such as Internet search engines) and machine
translation.

3.1 Corpus-based approaches to WSD.

The WSD task necessarily involves two steps: (1) the determination of all the different
senses for every word relevant (at least) to the text or discourse under consideration; and
(2) a means to assign each occurrence of a word to the appropriate sense.

Much recent work on WSD relies on pre-defined senses for step (1). The precise
definition of a sense is, however, a matter of considerable debate within the Community
(Kilgarriff, 1997). To avoid the precise definition of senses in Barwise and Perry’s (1953)
situation semantics was proposed, where the sense or senses of a word are seen as an
abstraction of the role that it plays systematically in the discourse. Schiitze (1992, 1993)
proposed a method that avoids the problem of sense distinction altogether: he creates
sense clusters from a corpus rather than rely on a pre-established sense list. In this survey
we will classify the methodologies applied to WSD according to the amount of
surpervision they require.

3.1.1 Supervised Methods

Supervised WSD seeks to learn classifiers that can assign senses to words in text using
machine learning techniques. These classifiers are trained on manually sense tagged
corpora. In general these classifiers are most suitable for lexical sample or target word
disambiguation, where all the occurrences of a given word in a text are assigned a sense.
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We can classify the supervised methods into two main approaches, namely, Naive Bayes,
and Information-theoretic.

Naive Bayes: Gale et al. (1993) approached supervised WSD by looking at the words
around an ambiguous word in a large context window. Each content word contributes
potentially useful information about which sense of the ambiguous word is likely to be
used with it. The classifier does no feature selection. Instead, it combines the evidence
from all features, according to Bayes decision rule:

Decide s’ if forSi 5", where P(5¢ |C) is computed by Bayes’ Rule.

Naive Bayes classier assumes that the words are independent (this is also known as “bag
P(s; [C)=P({v,|v,inC}|5,)= [] P, |s,)

vyin C

of words” model): The Naive Bayes

assumption is incorrect in the context of text processing, but it is useful.

When a new word need to be disambiguated, for each sense of that ambiguous word, a
score for the context is being calculated by summing up the scores of every word and
disambiguation is done by summing up scores of all the word in context and choosing the
sense with highest score. Other works that use Naive Bayes approach include (Mooney,
1996; Ng, 1997; Leacock et al., 1998).

Information Theory: In (Brown et al., 1991) an algorithm was proposed that finds a
single contextual feature that reliably indicates which sense of the ambiguous word is
being used. The Flip-Flop algorithm disambiguates between the different senses of a
word using the mutual information as a measure.

I(X;Y) = ,y)log2Y)_
)= 2 2 P log o)

This algorithm works by searching for a partition of senses that maximizes the mutual
information. The algorithm stops when the increase becomes insignificant.

The main disadvantage of supervised methods is that production of hand-labeled training
corpus is expensive. In addition, the problem of sense tagging is not always well-defined
(Kilgarriff, 1997), potentially causing inconsistencies and errors in the labeling process.

3.1.2 Dictionary Based Methods

In this group of methods the training corpus is unlabeled; instead external sources of
knowledge such as dictionaries and thesauri are used. The advantage is that these sources
are readily available and do not require any additional human effort.

Dictionary-based Disambiguation. Lesk (1986) was the first to look at word sense
disambiguation as a problem for natural language processing (NLP) tasks. He describes
an algorithm that syntactically parses passages of text, and then, using a machine
readable dictionary, assigns a particular sense to ambiguous words. Lesk’s assumption is
that a word’s dictionary definitions are likely to be good indicators for the sense they
define. He expresses the dictionary sub-definitions of the ambiguous word as sets of bag-
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of-words and the words occurring in the context of the ambiguous word as single bags-
of-words emanating from its dictionary definitions (all pooled together). Disambiguation
of the ambiguous word is based on choosing the sub-definition of the ambiguous word
that has the greatest overlap with the words occurring in its context.

Thesaurus-Based Disambiguation. The basic idea here is that the semantic categories of
the words in a context determine the semantic category of the context as a whole. This
category, in turn, determines which word senses are used.

In (Walker, 87) each word is assigned one or more subject codes which correspond to its
different meanings. For each subject code, we count the number of words (from the
context) having the same subject code. We select the subject code corresponding to the
highest count.

Yarowski(1992) describes a program that disambiguates English word senses in
unrestricted text using statistical models of the major Roget's Thesaurus categories.
Roget's categories serve as approximations of conceptual classes. The categories listed
for a word in Roger's index tend to correspond to sense distinctions; thus selecting the
most likely category provides a useful level of sense disambiguation. The selection of
categories is accomplished by identifying and weighting words that are indicative of each
category when seen in context, using a Bayesian theoretical framework.

Mihalcea (1999) used a WordNet based system to generate a sense tagged corpus without
further supervision.

3.1.3 Unsupervised Methods: Disambiguation vs. Discrimination

Word sense disambiguation is the task of assigning sense labels to occurrences of a
polysemous word. In (Schutze, 1998) this problem was divided into two sub-problems:
sense discrimination and sense labeling. Sense discrimination divides the occurrences of
a word into number of classes by determining for any two occurrences whether they
belong to the same sense or not. Sense labeling assigns a sense to each class, and, in
combination with sense discrimination, to each occurrence of the ambiguous word. Word
sense discrimination can be performed without any supervision, i.e., any external
knowledge of the ambiguous words meaning. The algorithm proposed in (Schutze, 1998)
is based on context-group discrimination. Context group discrimination groups the
occurrences of an ambiguous word into clusters, where clusters consist of contextually
similar occurrences. Words, contexts, and clusters are represented in a high-dimensional,
real-valued vector space. The context vectors are then clustered into coherent groups such
that occurrences judged similar according to some metric are assigned to the same
cluster. Clusters are represented by their centroids, the average of their elements. An
occurrence in a test text is disambiguated by computing the vector representation of the
relevant context, and assigning it to the cluster whose centroid is closest to that
representation.

Schutze (1998) claims that “context-group discrimination can be generalized to do a
discrimination task that goes beyond the notion of sense that underlies many other
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contributions to the disambiguation literature. If the ambiguous word's occurrences are
clustered into a large number n of clusters (e.g., n = 10), then the clusters can capture fine
contextual distinctions. Consider the example of space. For a small number of clusters,
only the senses of ‘outer space’ and ’limited extent in one, two, or three dimensions’ are
separated. If the word's occurrences are clustered into more clusters, then finer
distinctions such as the one between ‘office space’ and ‘exhibition space’ are also
discovered. Note that differences between sense entries in dictionaries are often similarly
fine-grained.”

Other works that use clustering based on similarity of term frequency in context include
(Rosenfeld et al. 1969, Kiss 1973, Ritter et al. 1989, Pereira et al. 1993). Pederson (1997)
used features for context representation and EM. Our methods is most similar to Schutze
(1992 & 1998) because we will use context representation that is only based on the word
co-occurrence patterns and make use of Singular Value Decomposition as part of LSA.

3.2 WSD and Psycholinguistics

Work in psycholinguistics in the 1960°s and 70’s established that semantic priming-- — a
process in which the introduction of a certain concept will influence and facilitate the
processing of subsequently introduced concepts that are semantically related-- — plays a
role in disambiguation by humans [(see, e.g., Meyer and Schvaneveldt, 1971). This idea
is realized in spreading activation models [(see Collins and Loftus, 1975; Anderson,
1976, 1983), where concepts in a semantic network are activated upon use, and activation
spreads to connected nodes. Activation is weakened as it spreads, but certain nodes may
receive activation from several sources and be progressively reinforced. McClelland and
Rumelbart (1981) added to the model by introducing the notion of inhibition among
nodes, where the activation of a node might suppress, rather than activate, certain of its
neighbors. Applied to lexical disambiguation, this approach assumes that activating a
node corresponding to, say, the concept MONEY will activate the “financial institution”
sense of bank, whose activation would in turn inhibit the activation of other senses of
bank such as “shore”.

4. Latent Semantic Analysis

Latent semantic analysis (LSA) is a mathematical technique used in natural language
processing for finding complex and hidden relations of meaning among words and the
various contexts in which they are found [Landauer, Dumais,1997; Landauer et al, 1998].
It is built on the basic ideas of association of elements with contexts and similarity in
meaning defined by similarity in shared contexts. LSA utilizes singular value
decomposition on the term-document matrix to perform the mapping between lexical
space and semantic space Although LSA is a purely a computational technique that is
based only on co-occurrence patterns, it can produce results that mimic the performance
of humans on certain standard language tests, including synonym-antonym matching,
vocabulary and topic extraction.

This section is organized as follows: first, we will describe basic vector representation of

a document known as a vector space model (VSM) and its applications. Then, we will
introduce LSA and explain how it addresses some of shortcomings of VSM. In the sub-
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sections that follow, we will describe the algorithm, several of its variations and its
applications that are relevant to this project.

4.1 Vector Space Model (VSM)

Vector space model was introduced by Salton et al. (1975, also Salton and McGill 1983)
for the field of information retrieval and had shown very good performance among the IR
systems (Harman 1992). In this model, documents and queries are represented as vectors
in a space where the axes (or dimensions) correspond to words. The coordinates of these
vector are usually a function of term frequency (how many times term appear in a
document) and/or document frequency (how many document contain this term).

Figure 1 illustrates this model. Real world examples have a vocabulary of several
thousands of words but here for simplicity we assume a vocabulary of two words (i.e.,
“car” and “insurance”) so that the lexical space has only two dimensions. 4 vectors in

Figure 1 represent a query (¢) and three documents ( d,,d,.d, ) as follows:

(£ ("car",d,), tf ("insurance",d,))
Ji* ("ear”.d)) +1f* ("insurance".d,) °

d =

({f ("car",q),tf ("insurance", q))
2 (ear”,q) + tf * ("insurance" ,q) °

where 1 (£.d) = the number of times word t occurred in document d.

For the examples shown in figure 1:

g =(0.71,0.71),d, =(0.13,0.99),d, =(0.8,0.6),d, =(0.99,0.13)

car
1t d

ds

: insurance
0 1

Figure 1: The document and the query vectors (Manning and Schutze,1999)

Using VSM, we can compare documents and queries by computing a similarity measure
between the vectors that represent them. The most commonly used similarity measure is
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cosine similarity measure illustrated in Fig.2 which refers to the angel between two
vectors (see Rhode et al. 2004 for some other measures):

> %y,
3 Xy T

L T

: =]

Figure 2: Cosine similarity measure (Gliozzo,2001)

One important characteristic of this model is that the relationship between words and
their sequence is lost, just like in a bag-of-words model. A known problem of this model
for IR is that VSM does not take into consideration polysemy and synonymy problems.

4.2 Latent Semantic Analysis (LSA)

LSA can be looked at as an extension to VSM. It addresses the polysemy and synonymy
problems by representing words and documents in a semantic space using mutual
implications of words and passages. The concept of LSA was initially introduced as an
indexing method called Latent Semantic Indexing (LSI) by Deerwester et al. (1990). it
was later shown that this method has some similarity to how human acquire the meaning
of words through the semantic similarity of word contexts and not through explicit
definitions (Miller & Charles 1991, Landauer & Dumais 1997, Laham 1998, Kintsch
2002).

In the remainder of this sub-section will explain each step of LSI/LSA. For more details
refer to LSI web site (http:/www.cs.utk.edu/~Isi/ M. Berry, S. Dumais) or (Rosario,
2000). http://Isa.colorado.eduw/ demos how LSA can be used for comparisons tasks
(nearest neighbor, matrix comparison, etc.) All figures in this section are from Manning
and Schutze (1999) (originally adapted from Deewester et al. (1990)).

LSA can be outlined as follows:

e Choosing a context size: e.g., this can be a fix window of words, a sentence, a
paragraph, a document, etc.

e Compiling a co-occurrence matrix

¢ Normalizing the matrix

e Singular Value Decomposition (SVD) and dimensioneality reduction

4.2.1 Choosing the Context

The first decision to make when creating LSA representation is the definition of word
context. In the information retrieval the context is usually the entire document (e.g., a
web page), but for other applications of LSA, such as WSD, context is not uniquely
defined, and various context sizes may produce different results. Schutze (1992) uses the
number of characters around the word and shows that a context of 1000 character
window has the best performance. Jones (1997) used the context size of 28 which is the
average length of sentence in corpus used and claimed that changing window size has
little effect in LSA results. Rhode et al. (2004) uses much smaller windows of size 2-7
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words. We will experiments with various context boundaries such as fixed windows,
sentence, paragraph and document and will compare the result with similar work.

4.2.2 Creating Document-Term Co-Occurrence Matrix (W)

After the context size has been decided a co-occurrence matrix can be compiled using the
data in the corpus. In the co-occurrence matrix the columns represent the different
contexts in the corpus, and the rows the different word tokens.

Figure 3 shows an example of such document-term co-occurrence matrix (document can
be replaced by any context). An entry ij in the matrix corresponds to the count of the

number of times the word token i appeared in context j. For example, in the context 9,
the word “cosmonaut” occurred once while in @5 it never occurred.

di dy d3 di ds ds
cosmonaut [1 0 1 O O O
astronaut 0 1 0 0 0 0
moon 1 1 0 0 0 0
car 1 0 0 1 1 0
truck 0 0 0 1 0 1

Figure 3 — Document-Term Co-occurrence Matrix W

This matrix defines a vector representation for each context. This vector representation is
also called the first-order representation, in contrast with second order representation of
the context (Schutze, 1998) which is using word-word co-occurrence information.

4.2.3 Normalizing the matrix

After co-occurrence matrix has been computed, it is normalized. Some weighting
schemes aim at normalizing the entropy by weighting the values for each word (i.e., each
set of row values) to emphasize their relative importance to the individual contexts and
the set of contexts as a whole. In some cases a uniform weighting schema is used (Jones
1997, Rhode 2004). In addition, in order to prevent numerical issues in the next steps, it
is common to perform a normalization of the document (or term) vectors independently
into unit vectors.

4.2.4 Singular Value Decomposition (SVD) and Dimensionality Reduction

The critical step of the LSA algorithm is to compute the singular value decomposition
(SVD) of the normalized co-occurrence matrix. An SVD is similar to eigenvalue
decomposition, but can be computed for non-square matrices. Given any matrix W, SVD

can uniquely output three matrices U, S and V such that: W =USV" | where U contains
orthonormal columns known as the lefi singular vectors, and V contains orthonormal
rows known as the right singular vectors, while the middle, S, is a diagonal matrix
containing the singular values. The left and right singular vectors are akin to eigenvectors
and the singular values are akin to eigenvalues and rate the importance of the vectors.

Figures 4 through 6 shows an example of SVD for the W matrix from Figure 3.
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| cosm.  astr. moon car truck
Dimension 1 | -0.44 -0.13 -0.48 -0.70 -0.26
Dimension 2 | -0.30 -0.33 -0.51 0.35 0.65
Dimension 3 0.57 -0.59 -0.37 0.15 -0.41
Dimension 4 0.58 0.00 0.00 -0.58 0.58
Dimension 5 0;25 0.73 -0.61 0.16 -0.09

Figure 4 — Matrix U: Left Singular Vector (US is Word Vectors in Semantic Space)

216 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39

Figure 5 — Matrix S: Singular Values

d, d> ds dy ds de
Dimension 1 | -0.75 -0.28 -0.20 -0.45 -0.33 -0.12
Dimension 2 | -0.29 -0.53 -0.19 0.63 0.22 0.41
Dimension 3 0.28 -0.75 045 -0.20 0.12 -0.33
Dimension 4 0.00 0.00 0.58 0.00 -0.58 0.58
Dimension 5 | —0.53 0.29 0.63 0.19 0.41 -0.22

Figure 6 — Matrix V: Right Singular Vector (SV' is Context Vectors in Semantic Space)

The singular vectors reflect principal components, or axes of greatest variance in the data,
constituting concepts of in the semantic space. If the matrices comprising the SVD are
permuted such that the singular values are in decreasing order, they can be truncated to a
much lower rank, s. It can be shown that the product of these reduced matrices is the best
rank s approximation, in terms of sum squared error, to the original matrix W. According
to (Landauer et al, 1997), it is this dimensionality reduction step, the combining of
surface information into a deeper abstraction, that captures the mutual implications of
words and passages, and singular vector represent the axes of this semantic space.

Figure 7 illustrated the dimensionality reduction step figure 8 shows the reduced
dimensionality document vectors. The vector representing word w in the reduced rank

space is U., the w-th row of U, while the vector representing context (document) dis ¥,
the d-th row of V.

The similarity of two words or two documents in LSA is usually computed using the
cosine of their reduced dimensionality vectors. Comparison of the original co-occurrence
matrix W and the direction of the vectors in figure 9 demonstrates the concept of LSA.
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w U
Figure 7 — Reducing Dimensionality

| d[ dz d3 d4 ds d6
Dimension 1 | -1.62 -0.60 -0.04 -0.97 -0.71 -0.26
Dimension 2 | -0.46 -0.84 -0.30 1.00 0.35 0.65

Figure 8 — Reduced dimensionality Matrix V

1djm2
1.0 +

dim 1

Figure 9 — Documents in Reduced Semantic Space

4.3 Extensions to LSA

4.3.1 Probabilistic Latent Semantic Analysis (PLSA)

Hofmann (1999) proposed Probabilistic Latent Semantic Analysis as a statistical
technique for the analysis data co-occurrence. Compared to standard Latent Semantic
Analysis which stems from linear algebra and performs a Singular Value Decomposition

of co-occurrence tables, the proposed method is based on a mixture decomposition
derived from a latent class model.
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The starting point for Probabilistic Latent Semantic Analysis is a statistical model which
has been called aspect model. The aspect model is a latent variable model for co-
occurrence data which associates an unobserved class variable z with each observation.
Like virtually all statistical latent variable models the aspect model introduces a
conditional independence assumption, namely that d and w are independent conditioned
on the state of the associated latent variable z. Since the cardinality of z is smaller than
the number of documents/words in the collection, z acts as a bottleneck variable in
predicting words. Hofmann (1999) argued that this approach is more principled than
standard Latent Semantic Analysis, since it possesses a sound statistical foundation, and
has experimentally verified the claimed advantages achieving substantial performance
gains. Probabilistic Latent Semantic Analysis can thus to be considered as a promising
novel unsupervised learning method with a wide range of applications in text learning
and information retrieval.

4.3.2 Latent Semantic Kernel (LSK)

Cristianini et al. (2001) proposed algorithm that combines kernel methods that have
successfully been used for text categorization with LSA. Kernel based learning methods
are a state-of-the-art class of learning algorithms, whose best known example is Support
Vector Machines (SVMs) [Burges, 1999]. In this approach, data items are mapped into
high dimensional spaces, where information about their mutual positions (inner products)
is used for constructing classification, regression, or clustering rules. They are modular
systems, formed by a general purpose learning module (e.g. classification or clustering)
and by a data specific element, called the kernel that acts as an interface between the data
and the learning machine by defining the mapping into the feature space. Kernel based
algorithms exploit the information encoded in the inner product between all pairs of data
items. Somewhat surprisingly, this information is sufficient.

In their paper Cristianini et al. shows how LSA/LSI can be performed implicitly in any
kernel induced feature space, and how it amounts to a ‘kernel adaptation' or “semantic
kernel learning' step. Once the dimension of the new semantic feature space are fixed , its
computation is equivalent to solving a convex optimization problem of eigenvalue
decomposition, so it has just one global maximum that can be found efficiently using a
technique based on the GramSchmidt orthogonalisation procedure. Experimental results
are provided with text and nontext data showing that the techniques can deliver
improvements on some datasets.

4.3.3 Latent Semantic Mapping (LSM)

LSM is a generalization of LSA so it can be applied to many other fields as a “mapping
model” (Bellegarda, 2005). This article looks at LSA as a tool for extracting “underlying
latent semantic structure that is partially obscured by randomness in choice of words”.
LSM is mapping data from one space to another by taking into consideration three factors
(which are originated in LSA):

1) Discrete values are mapped to continuous parameters so they are more suitable for
machine learning algorithms
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2) Dimensionality is reduced in the direction of highest variance

3) Global outlook is preserved which plays an important role in abstracting large amount
of data.

This model is used for applications such as junk email filtering or pronunciation
modeling. The difficulty with this model is again the computational cost of SVD,
especially when it comes to updating the model with a large amount of data.

5. Model-based Clustering

Clustering is the unsupervised classification of patterns (observations, data items, or
feature vectors) into groups (clusters). Existing clustering approaches can be divided into
two main categories: discriminative (distance/similarity based) approaches and
generative (model-based) approaches. In similarity-based approaches, one determines a
distance or similarity function between pairs of data samples, and then groups similar
samples together into clusters. A disadvantage of the similarity based approaches is that
calculating the similarities between all pairs of data samples is computationally
inefficient, requiring a complexity of at least O(N?), where N is the number of samples in
a dataset.

Parametric or model-based approaches, on the other hand, attempt to learn generative
models from the data, with each model corresponding to one particular cluster. The type
of model is often specified a priori (e.g. Gaussian, or Gaussian mixture models). The
model structure (e.g. the number mixtures) can be selected by model selection techniques
and parameters estimated using the Expectation Maximization (EM) algorithm [Dempster
et al, 1977]. Probabilistic model-based clustering techniques have shown very promising
results in different applications. Gaussian mixture models are the most popular models
used for vector data [Banfield and Raftery, 1993; Fraley, 1999, Yeung et al, 2001]. A big
advantage of the model-based clustering framework is that the similarity measure
between any pair of data samples, which is usually difficult to define and calculate for
certain complex data types, is not needed.

In both categories, the most popular clustering techniques include partitional clustering
and hierarchical clustering [Hartigan, 1975; Jain et al, 1999]. A partitional method
iteratively partitions the data samples into K (often specified a priori) groups according
to some optimization criterion.

A hierarchical method creates a hierarchical grouping of the data samples and °thus
returns a set of nested clusterings.

A well-known example of model-based partitional clustering algorithms is the K-means
algorithm, a simple but effective algorithm that has been used extensively in practice.
Theoretically it is related to the famous EM algorithm, which is a soft partitional method
when used for clustering [Alldrin et al, 2003].
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The K-Means algorithm finds K clusters by choosing K data points at random as initial
cluster centers. Each data point is then assigned to the cluster with center that is closest to
that point. Each cluster center is then replaced by the mean of all the data points that have

been assigned to that cluster. This process is iterated until no data point is reassigned to a
different cluster.

EM finds clusters by determining a mixture of Gaussians that fit a given data set. Each
Gaussian has an associated mean and covariance matrix. However, if spherical Gaussians
are used, a variance scalar is used in place of the covariance matrix. The prior probability
for each Gaussian is the fraction of points in the cluster defined by that Gaussian. These
parameters can be initialized by randomly selecting means of the Gaussians, or by using
the output of K-means for initial centers. The algorithm converges on a locally optimal
solution by iteratively updating values for means and variances.

5.1 The use of Regularization Methods to Determine the Number of
Clusters (word senses)

The problem of unsupervised clustering when the number of clusters is not known is ill-
posed. The error of fitting to the data can only be reduced by increasing the number of
clusters: the best fit for the data would be a trivial clustering were the number of clusters
is equal to the number of vectors in our data set. For WSD that means a different sense
for every occurrence of a word. Of course, this trivial clustering does not provide any
information on the nature of the data. To find automatically both the best number of
cluster and meaningful clustering, regularization methods can be used. Regularization is a
method of imposing additional conditions for solving inverse problems with optimization
methods. When model parameters are not fully constrained by the problem (the inverse
problem is mathematically ill-posed), regularization limits the variability of the model
and guides the iterative optimization to the desired solution by adding assumptions about
the model power, smoothness, predictability, etc. A thorough mathematical theory of
regularization has been introduced by works of Tikhonov's school [(Tikhonov and
Arsenin, 1977].).

With regularization, the objective function that the clustering algorithms are trying to
optimize measures not only the fit of the model to the data (this fit can only be made
better by adding clusters), but also a penalty term that measures the complexity of the
model ( this penalty is smaller for simpler models with fewer clusters).

In particular, we are interested in two instances of regularization methods, namely,
Minimal Description Length and Structured Risk Minimization.

5.1.1 Minimum Description Length

The Minimum Description Length (MDL) Principle [Rissanen, 1978; Rissanen ,1989;
Griinwald et al, 2005] is a method for inductive inference that provides a generic
solution to the model selection problem. MDL views the problem of model estimation as
data compression, and is based on the following insight: any regularity in the data can be
used to compress the data, i.e. to describe it using fewer symbols than the number of
symbols needed to describe the data literally. The more regularities there are, the more
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the data can be compressed. Equating ‘learning' with 'finding regularity’, we can
therefore say that the more we are able to compress the data, the more we have learned
about the data. Formalizing this idea leads to a general theory of inductive inference with
several attractive properties: '

1. Occam's Razor. MDL chooses a model that trades-off goodness-of-fit on the
observed data with ‘complexity’ or 'richness' of the model. As such, MDL embodies a
form of Occam’s razor, a principle that is both intuitively appealing and informally
applied throughout all the sciences.

2. No over-fitting. MDL procedures automatically and inherently protect against over-
fitting and can be used to estimate both the parameters and the structure (e.g., number
of clusters) of a model.

3. Bayesian interpretation. MDL is closely related to Bayesian inference, but avoids
some of the interpretation difficulties of the Bayesian approach, especially in the
realistic case when it is known a priori to the modeler that none of the models under
consideration is true.

4. No need for ‘underlying truth. In contrast to other statistical methods, MDL
procedures have a clear interpretation independent of whether or not there exists some
underlying “true' model.

5. Predictive interpretation. Because data compression is formally equivalent to a form
of probabilistic prediction, MDL methods can be interpreted as searching for a model
with good predictive performance on unseen data.

The Use of MDL for Clustering Word Senses.

Using MDL principle the objective function to be optimized by clustering algorithms
includes two terms. The first term measures the quality of data fit — and in MDL terms,
the number of bits needed to encode the data given the model, and the second term,
corresponding to the penalty term in regularization techniques, measures the number of
bits needed to encode the model, and is proportional to the number of parameters
(clusters) in the model. An example of MDL application for automatically finding the
number of clusters is AUTOCLASS (Cheeseman, 1988), a project by NASA.

5.1.2 Structural Risk Minimization

Structural risk minimization (SRM) is an inductive principle for selecting a model from a
sequence of sets of models based on complexity regularization. It was introduced by
Vapnik and Chervonenkis, 1974, and later analyzed by Lugosi and Zeger(1995, 1996).
Structural Risk minimization is based on statistical theory of machine learning. It had
been shown that the generalization error of model (i.e. learning machine) in bounded by
a sum of two terms: the first is the error the machine makes on a training set of

data, Remp(a), and the second is a term that is a proportional to the VC-dimension #

[Vapnik and Chervonenkis, 1971] of the learning machine normalized by the size of the
training set /. VC dimension of a model is usually related to the number of independent
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parameters of the model. SRM is a methodology to choose a model that minimizes this
upper bound on actual risk (generalization error) R(@)

Ria) £ Rempla) + \ (J‘*i’log(ﬂ.s'b} +e‘ 1) - 1051113.-"4;1)

over a nested structure of models as shown in figure 10.

M B3 h2c mM 0 hi<h2<h3..

Figure 10: Structural Risk minimization (Burges (1998))

The Use of SRM for Clustering Word Senses.

To use SRM for word sense clustering, several experiments for word-sense clustering
need to be performed, with varying number of clusters. The optimal clustering among
those is chosen as the one that minimizes the upper bound of generalization performance.

6. Using LSA for word sense frequency estimation: Experimental
Setup

Data Preprocessing:

e Stemming: Porter Stemmer (1980) will be used for extracting the roots of the
words, e.g., ‘eating’ will be converted to ‘eat’

e Eliminating stop words: Stop words are high frequency words that often do play
important role for classifying the context, e.g., ‘a’, ‘the’, etc.

o Creating n-gram: n-grams are groups of n-word sequences that we will treat as
words. The advantage is capturing some of the language structures in compare to
bag-of-words (i.e., using unigram or treat each word separately)

Evaluation:
There are two ways to evaluate the results:

1. Perform the ‘sense tagging’ manually and compare the cluster memberships with tags.

2. Compute cluster purity against the most frequent tagged sense:
S, =arg maxg n(S,)
n(xeC, AS(x)= S, )

n(xeC)

error, =1 -

Corpora

The problem of finding the word sense frequency is more similar to the word sense
discrimination than word sense disambiguation (See section 3 for more details).
Therefore, we only need to use the sense tags for evaluation.

41



Senseval project started in 1998 with the goal of creating a unified standard for
evaluating the word sense disambiguation systems and it provides a great source of
tagged and untagged corpora, which are publicly available (See http://www.senseval.org/
for detail). Senseval training task that is relevant to this project is called English Lexical
Sample. While we will still use data provided for this task, but for our initial experiment
we decided to use tagged instances for the three words “line, hard and serve”. The source
of this data is ACL/DCI Wall Street Journal (American Printing House for the Blind, San
Jose Mercury) and it consists of three XML files for line (6 senses, 4146 instances), serve
(4 meaning, 4378 instances), hard (3 senses, 4333 instances). See Leacock et al. 1993 for
more description for this data. This dataset is chosen for the following reasons:

1. Easy and distinguishable meaning

2. One meaning per instance

3. Existence of benchmarking results (Sensecluster by Pederson)
4. Large number of instances

In addition to that, only for training, we will use the some texts from Project Gutenberg,
which i1s likely to improve the accuracy of the results.

Software
SVD step is perhaps the most significant and computationally speaking, the most

expensive step for LSA (Asymptotically, the generic algorithm for a dense matrix is o)
where # is the dimension). The choice of programming language is mostly affected by

this and we have decided to use the combination of the following for different stages of
our experiment:

1. Matlab is commercial mathematical software by Mathworks, which has great feature
for matrix manipulation, statistics and visualization. It has become standard de facto in
research community due to its ease of use. Although various packages are available for
dealing with SVD (commands: svd, ssvd and gsvd), but Matlab is usually having
problems with large matrices (i.e., several thousand dimension). Also, no special
consideration is made for sparse matrices however the program can be extended to
support those algorithms.

2. Java. Very versatile programming language and many useful packages are available.
JAMA is software package provided by NIST that we will use for matrix manipulation
and SVD. The programs are tested to run in reasonable amount of time for up to 3000
dimensions.

3. C++/C. There aren’t as many great ready-to-use features as in Matlab or Java, but

speed and memory usage is much more in control of the programmer. Most important
advantage is the availability of the SVDPACK (Berry, 1992), which computes the SVD
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for sparse matrices very efficiently and has been used in most of the cited papers for this
project.
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